Mark scheme - Resistance

	Answer/Indicative content	Mark s	Guidance
1	A	1	
	Total	1	
2	C	1	Examiner's Comments All of the questions showed a positive discrimination, and the less able candidates could access the easier questions. The questions in Section A do require careful reading and scrutiny. Candidates are advised to reflect carefully before recording their response in the box. Candidates must endeavour to use a variety of quick techniques when answering multiple choice questions. The candidates to demonstrate their knowledge and understanding of physics. Tested knowledge of how uncertainties compound when determining resistance of a filament lamp.
	Total	1	
3	B	1	Examiner's Comments Candidates answered this question well. A range of techniques could be used to get to the correct answer B. This is illustrated by the two exemplars below. Exemplar 2 Lamp X emits a power of 2:0W and lamp Y emits a power of 6.0W. What is the potential difference across the lamp \mathbf{X} ? A 1.0 V B 4.0 V $p=I V$ C 12 V $P \propto V$ D 16 V Your answer \square B This shows the thought processes of a top-end candidate. The current in the series circuit is constant, hence the potential difference must be proportional to the power dissipation. These two lines is all it took for this candidate to identify the correct answer \mathbf{B}.

				Exemplar 3 Lamp X emits a power of 2.0 W and lamp Y emits a power of 6.0 W . What is the potential difference across the lamp \mathbf{X} ? A 1.0 V $P=I V$ B 4.0 V $\begin{aligned} P & =I V \\ V & =\frac{D}{I} \\ & =\frac{2}{12} \\ & =4 v \end{aligned}$ $\frac{s}{16} \stackrel{5}{=} I$ $\text { C } \quad 12 \mathrm{~V}$ $\frac{1}{2}=I$ $\text { D } \quad 16 \mathrm{~V}$ Here's another equally valid technique, which may have been a bit time-consuming for this grade D candidate. The total power dissipated has been used to determine the current in the circuit. The correct value of 4.0 V across lamp \mathbf{X} has been calculated using this current and the equation $P=V I$. It is worth noting the sensible approach of annotating the figure. This would have helped to steer away from the popular distractor C .
		Total	1	
4		B	1	
		Total	1	
5		D	1	Examiner's Comments The correct response is \mathbf{D}. This question also proved to be challenging as not many candidates will have come across this style of circuit before. Therefore in most cases, it will have to have been worked out from application of conventional current flow. It would likely be evident that LED Q is lit, probably accounting for the very few candidates selecting response B. Many candidates incorrectly selected response \mathbf{A}, presumably as its polarity is the same as \mathbf{Q}.
		Total	1	
6		D	1	
		Total	1	
7		X (filament) lamp (fixed)(ohmic) resistor	B1	Allow ptc thermistor / heater element Not metallic conductor Examiner's Comments Many candidates did not appear to recognise the $I-V$ characteristics for a filament lamp or an ohmic resistor. Incorrect answers that were

$\left.\begin{array}{|l|l|l|l|l|}\hline & & & & \begin{array}{l}\text { often seen included diodes and LDRs. } \mathrm{X} \text { could have been a } \\ \text { thermistor with a positive temperature coefficient (ptc) although the } \\ \text { specification only makes reference to thermistors with negative } \\ \text { temperature coefficients }\end{array} \\ \hline \text { 8 } & & \begin{array}{l}\text { Total }\end{array} \\ \hline \begin{array}{l}\text { the current (induced in the aerial) is } \\ \text { alternating }\left(5 \times 10^{8} \text { times per second) }\right. \\ \text { (so the meter would register zero) } / \\ \text { AW } \\ \text { or the diode (half-)rectifies the current } / \\ \text { changes the current (from a.c.) to d.c. } /\end{array} & & \text { B1 } & \begin{array}{l}\text { Allow 'a diode only lets current pass through in one direction' AW } \\ \text { AW } \\ \text { Examiner's Comments }\end{array} \\ \hline \text { Allowing a mark for the diode only letting current pass in one } \\ \text { direction enabled many candidates to score this mark. There was } \\ \text { little mention of alternating current among the responses. }\end{array}\right\}$

				This exemplar illustrates a flawless answer from a top-end candidate. The equations are clear to see and follow. The units of each physical quantities are clearly identified and the appropriate S.I. units for the quantities have been successfully manipulated to give the correct answer. Compare this with the exemplar below which illustrates a common misconception. Exemplar 5 This exemplar illustrates a common error made by some candidates across the ability spectrum. The resistivity ρ in the equation for resistance has been mistaken for density (which unfortunately has the same label). There can be no credit for wrong physics. It is vital to know your equations. Key: Misconception
		Total	2	
7	a	Best fit straight line drawn through the last 4 data points. Gradient of the line determined. $\boldsymbol{p}=$ gradient $\mathbf{x} A$, hence resistivity $=$ $(1.1 \pm 0.1) \times 10^{-6}(\Omega \mathrm{~m})$	B1 B1 B1	Allow a maximum of 2 marks if the line of best fit is drawn through all 5 data points.
	b	The actual resistance values will be smaller. The gradient of the graph will be lower. Hence resistivity of the metal will be smaller than the value in (b).	B1 B1 B1	
		Total	6	

	ii	Contact resistance due to croc clips hence the resistance in the circuit must be greater. or Heating of wire hence the resistance of the wire increases. or (Finite) resistance of ammeter hence the total resistance of circuit increases. or Actual length between croc-clips is shorter or $<0.75 \mathrm{~m}$; hence resistance of wire is greater.	B1 B1	Allow: Correct zero error on meters (e.g voltmeter reading is 'higher' or ammeter reading is 'lower') hence the (determined) resistance is greater.
		Total	4	
2	i	With the variable resistor set at zero / close to zero, the p.d. across the resistor is zero / small, so p.d. across lamp is $2.4 \mathrm{~V} /$ large. With the variable resistor set at its maximum value, there is a p.d. across the variable resistor, so p.d. across the lamp is not small.	B1 B1	
	ii	The lamp is connected to the slider contact of a potentiometer arrangement. Ammeter and voltmeter connected correctly.	B1 B1	
		Total	4	
3		Any three from: - Fig. 23.3 - p.d. split equally / (p.d. across each =) $3.0(\mathrm{~V})$ - Fig. 23.3 - current $=0.36(\mathrm{~A})$ (from the graph) - Fig. 23.4 - p.d. = 6.0 (V) (across each or combination) - \quad Fig. 23.4 - current $(=2 \times 0.50)$ $=1.0(0)(\mathrm{A})$ $0.36 \times 3(=1.08)$ is about $1.0(\mathrm{~A})$	M1×3 A1	Note that each of the M1 mark can be implied in a calculation Note 8.3.. (Ω) will score the 3.0 V and the 0.36 A marks Note $12(\Omega)$ will score the 6.0 V mark Note this mark is for showing that I_{P} is about 3 times I_{S} Examiner's Comments This question produced a range of marks, with most candidates securing 2 or more marks. For the lamps in series, it was important to recognise that the potential difference across each lamp is 3.0 V . From the $I-V$ graph, this meant a current I s of about 0.36 A . For the lamps in parallel, the current in each lamp was 0.50 A because the potential difference across each lamp was 6.0 V . This meant that the current I_{P} was twice the current in each lamp; 1.00 A. The current I_{P}

$\left.\begin{array}{|l|l|l|l|}\hline & & \begin{array}{l}\text { is about } 2.8 \text { times greater than current Is. This final step of the } \\ \text { analysis was often omitted by most of the candidates. }\end{array} \\ \text { A significant number of candidates scored no marks here and about } \\ 10 \% \text { of the candidates omitted this question altogether. }\end{array}\right\}$

			density (of charge carriers) increases Voltmeter reading does not change (because there is no internal resistance)	B1	Allow 'more electrons / more charge carriers' Allow voltmeter reading stays 3.0 (V) Examiner's Comments This question on the heating of a thermistor favoured the top-end candidates. Most candidates recognised that the resistance of the NTC thermistor decreased as its temperature was increased. The explanation of why the current increased lacked robustness. Some correctly gave the explanation as 'increased number density of free electrons' or successfully showed that current was inversely proportional to the resistance. The fate of the voltmeter reading baffled many candidates. The answer was simple, the voltmeter reading remained unchanged because the battery had no internal resistance. For many, the voltmeter reading increased because 'p.d. was proportional to the current'.
			Total	5	
		i	(Current causes) increase in temperature of thermistor Resistance of thermistor decreases (and hence V decreases) or Current in the circuit increases, p.d. across resistor increases (and hence Vdecreases)	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \end{aligned}$	Allow warms up / heat ups Ignore increase temperature of the circuit
		ii	$\begin{aligned} & V=2.4(\mathrm{~V}) \text { or } \mathrm{V}_{\mathrm{R}}=3.6(\mathrm{~V}) \\ & I=0.30(\mathrm{~A}) \\ & \text { resistance }=8.0(\Omega) \end{aligned}$ OR $V=2.4(\mathrm{~V})$ and a potential divider equation / idea $\begin{aligned} & 2.4=\frac{R}{R+12} \times 6.0 \text { or } \frac{R}{2.4}=\frac{12}{3.6} \\ & \text { resistance }=8.0(\Omega) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Not $V=2.2(\mathrm{~V})$; misreading Allow ECF if $V=2.2(\mathrm{~V})$ is used Allow 8 (1 SF answer) Not $V=2.2(\mathrm{~V})$; misreading Allow ECF if $V=2.2(\mathrm{~V})$ is used Allow 8 (1 SF answer)
			Total	5	
3 6	a		$\begin{aligned} & E=y \text {-intercept } \\ & r=- \text { gradient } \end{aligned}$	B1 B1	E must be the subject R must be the subject Do not accept gradient $=-r$
	b		$\left(R=\frac{5.68}{0.025}=\right) 230 \Omega$	A1	Allow 227
		ii	$\begin{aligned} & \left(\frac{5.68^{2}}{(\mathrm{c})(\mathrm{i})} \text { or } 0.025^{2} \times(\mathrm{c})(\mathrm{i}) \text { or } 0.025 \times 5.68=\right) \\ & 0.14 \times 300=42(\mathrm{~J}) \end{aligned}$	C1	Allow ECF from (c) (i) 0.140 or 0.142 or 0.144 Allow 43 (J) (for 0.142 or 0.144)

\begin{tabular}{|c|c|c|c|c|}
\hline \& ii \& \begin{tabular}{l}
\[
\left(Q=\frac{(c)(\text { (ii) }}{5.68} \text { or } 0.025 \times 300=\right) 7.4 \text { or } 7.5
\] \\
C
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1
\end{tabular} \& Allow ECF from (c) (ii) \\
\hline \& \& Total \& 7 \& \\
\hline \& a \& \(\xrightarrow{*}\) \& B1 \& two arrows needed not across resistor; allow a surrounding circle with arrows outside circle \\
\hline \& ii \& \begin{tabular}{l}
1 from graph \(3.0(\mathrm{k} \Omega)\)
\[
\begin{aligned}
\& I=4.0 / 3.0=1.33 \times 10^{-3} \mathrm{~A} \text { or } \\
\& R=2.0 / 4.0 \times 3.0 \times 10^{3} \\
\& R=(6.0-4.0) / 1.33 \times 10^{-3} \\
\& =1.5 \times 10^{3}(\Omega)
\end{aligned}
\] \\
2 at \(2.4 \vee R_{\text {LDR }}=1.0 \mathrm{k} \Omega\) \\
giving \(2.5\left(\mathrm{~W} \mathrm{~m}^{-2}\right)\)
\end{tabular} \& B1
C1
A1
A
M1

A1 \& | allow 3.1 ± 0.1 (k Ω) |
| :--- |
| accept 1.3 mA ; accept potential divider argument |
| allow $1.5 \mathrm{k} \Omega$; |
| special case: using 2.4 V in place of 4.0 V gives $\mathrm{R}=4.5 \mathrm{k} \Omega$; give 1 mark out of 2 |
| ecf (b)(ii); allow potential divider or $\mathrm{I}=2.4 \mathrm{~mA} \text {; }$ |
| for special case: $\operatorname{RLDR}=9.0 \mathrm{k} \Omega$; |
| give 1 mark out of 2 |
| allow 2.4 to $2.6 \mathrm{~W} \mathrm{~m}^{-2}$ |
| N.B. remember to record a mark out of |
| 5 here |
| Examiner's Comments |
| More than half of the candidates knew the correct circuit symbol for an LDR. The most common error was to draw an LED. More candidates used a potential divider approach to solve the problem than calculated the current in the circuit; many gaining full marks. Those who misread the question and reversed the voltages required to switch the lamp on and off were given some credit for their answers. |

\hline \& \& | Level 3 (5-6 marks) |
| :--- |
| Clear planning and correct identification of terminals and position of components |
| There is a well-developed line of reasoning which is clear and logically structured. The information presented is clear relevant and substantiated. |
| Level 2 (3-4 marks) |
| Clear planning and correct identification of some components / terminals |
| There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. |
| Level 1 (1-2 marks) |
| Some planning and / or an attempt at identifying component / terminals | \& \[

$$
\begin{gathered}
\text { B1 } \times \\
6
\end{gathered}
$$

\] \& | Use level of response annotations in RM Assessor, e.g. L2 for 4 marks, |
| :--- |
| L2^ for 3 marks, etc. |
| Indicative scientific points may include: |
| Planning |
| - suitable circuit arrangements / diagrams drawn between two points which could be connected to the box terminals |
| - use of R to limit current, e.g. to find CD terminals |
| - logical plan of connection across terminals e.g. connect circuit to each pair of terminals in turn |
| - identify terminals C and D as the circuit with the largest current / smallest resistance |
| - A and B identified because $C D$ known or the circuit including terminals AC / D has the smallest current / largest resistance |
| Identifying |
| - $\quad V=I R$ quoted or used in calculations |
| - $R_{\mathrm{T}}=\Sigma R$ used to determine the 220Ω or the 470Ω resistors |

\hline
\end{tabular}

		There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.		- For 220Ω resistor (between AB or BC / D) current is $27(\mathrm{~mA}) \mathrm{A}$ or 19 (mA) with R - For 470Ω resistor (between $A B$ or $B C / D)$ current is $13(\mathrm{~mA})$ or 11 (mA) with R - For both resistors (between AC / D) current is $8.7(\mathrm{~mA})$ or 7.6 (mA) with R - For wire (between CD) current is 0.060 A Examiner's Comments This level of response (LoR) question had two strands - planning how to determine the positioning of two resistors inside an unlabelled four terminal box and then verifying the values of their resistances. Some candidates concentrated on determining the labelling of the terminals; others assumed the positions and explained how the resistances could be determined. Many candidates made the task more difficult than necessary. For example it was intended that once terminals \mathbf{C} and \mathbf{D} had been identified, \mathbf{C} could only be lower left and not lower right, and hence the positions of \mathbf{A} and \mathbf{B} were also identified. A very common circuit used to determine the resistances placed the supply between \mathbf{A} and \mathbf{C} with the given resistor \mathbf{R} between \mathbf{B} and \mathbf{D}, leading to calculations requiring combinations of resistors in series and parallel. Many ignored the limiting resistor \mathbf{R} and probed the box without it, a few stating that the current between C and D would be zero with the supply across CD. Some answers lacked any circuit diagram and some 15% failed to attempt the question. Weaker candidates were confused as to when the resistors were connected in series or in parallel. Generally, the responses were clearer in terms of planning than identifying. Comments such as and then you can work out the arrangement of the resistors were common without showing how this could be done. A small number of candidates introduced a voltmeter and others wanted to position the ammeter 'inside' the box.
		Total	12	
3 8	a i	$\begin{aligned} & R=\frac{230^{2}}{3500}=15.11 \\ & 15(\Omega) \end{aligned}$	M1 A0	Allow calculation of current (15.2) and $R=V / I$ Not $3500 / 230=15.2$ Examiner's Comments This question asked candidates to show that the resistance of one of the heaters was 15 Ohms. Some candidates divided 3500 W by 230 V which gave an answer of 15.2 A which was the current. If these candidates then divided 230 V by 15.2 A they still gained the mark.
		$\begin{aligned} & A=\pi \times 0.00055^{2}\left(=9.5 \times 10^{-7} \mathrm{~m}^{2}\right) \\ & L=\frac{15 \times 9.5 \times 10^{-7}}{1.6 \times 10^{-6}} \\ & 8.9(\mathrm{~m}) \end{aligned}$	C1 C1 A1	Note $8.9 \times 10^{\mathrm{n}}$ scores two marks Allow 15.1 gives 9.0 m

				Examiner's Comments It was pleasing to see many good answers to the determination of the length of the wire. Candidates showed clearly how they determined the area and then substituted correctly into the rearranged equation for resistivity. Some candidates round their answer to one significant figure.
		(Ohm's law states that) V proportional to I (provided the physical conditions / temperature remain constant) Since the temperature is not constant, Ohm's law will not apply	B1	Allow one mark for Ohm's law will not apply because as temperature changes the resistance changes Examiner's Comments Candidates often scored a mark for stating Ohm's law; candidates should define any symbols used. Candidates often did not refer to any temperature change in the heater. Vague answers referring to "heating" did not score.
	b	$\begin{aligned} & 3.5 \times 7 \text { or } 3.5 \times 7 \times 7 \text { or } 10.5 \times 7 \text { or } \\ & 10.5 \times 7 \times 7 \text { or } 514.5 \\ & 514.5 \times 7.6 p=£ 39.10 \text { or } £ 39.11 \end{aligned}$	C1	Note for use of 17 hours $£ 94.96$ scores one mark Allow 3910p or 3911 p or $£ 39.1$ or $£ 39.102$ Examiner's Comments A surprising number of candidates did not correctly determine the cost of electricity. Many candidates did not use three heaters or seven days. For the award of the intermediate mark, clear working needed to be shown.
		Total	8	
		Please refer to point 10 of the marking instructions of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Typically, circuit including meters is correctly drawn on Fig. 4.2(b). Explanation of action of both circuits is correct. Presence of 100Ω explained. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Typically, circuit including meters is correctly drawn on Fig. 4.2(b). Action of only Fig. 4.2(b) circuit explained correctly. Purpose of 100Ω stated but value not justified. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and	B1	Indicative scientific points may include circuit diagram 1. resistor and LED in series 2. ammeter in series and voltmeter in parallel with LED 3. correct symbols for LED, ammeter, voltmeter, etc. 4. correct polarity of LED action of circuit 1. circuit completed on Fig. 4.2(b) 2. voltage across $\mathbf{A B}$ can be varied from 0 to 6 V 3. some justification; e.g. potential divider circuit 4. in Fig. 4.2(a) circuit voltage only varies from 6 to about 5.6 V as resistance can only be varied from 110 to 100Ω (+ LED)/AW presence of 100Ω resistor 1. the current in the circuit is limited by the resistor so ensures LED cannot burn out 2. at 6 V the potential divider across AB gives 2 V across LED as its resistance is about 50Ω / AW

		supported by some evidence. Level 1 (1-2 marks) Typically, circuit including meters is correctly drawn on Fig. 4.2(a). No correct explanations or basic information on the action of circuit or presence of 100Ω resistor. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear 0 marks No response or no response worthy of credit.		
		Total	6	
0	i	$\begin{aligned} & \left(\mathrm{R}_{\mathrm{B}}=\right) 9.5 \times 0.40 \text { or } 3.8(\Omega) \\ & \text { (parallel resistance }=\text {) }\left[3.8^{-1}+1.8^{-1}\right]^{-1} \\ & \text { or } 1.22 \ldots(\Omega) \\ & \text { (total resistance }=\text {) } 1.22 . .+0.62 \text { or } \\ & 1.84(\Omega) \\ & I=\frac{1.4}{1.22 \ldots+0.62} \\ & \mathrm{I}=0.76(\mathrm{~A}) \end{aligned}$	C1	Possible ECF from R_{B} Possible ECF from parallel resistance Possible ECF from total resistance Allow 3 marks for 0.66 A ; $\mathrm{R}_{\mathrm{B}}=9.5 \Omega$ used Examiner's Comments This circuit question required multiple steps to calculate the current I in the circuit. Firstly, the candidates had to determine the resistance of wire B, then sort out the parallel combination of resistors A and wire B, and eventually deal with the whole circuit which included the internal resistance of 0.62Ω. The question discriminated well, with almost half of the candidates securing full marks. The responses were often well-structured and demonstrated skilled use of calculators. Some responses were spoilt by premature rounding of numbers, but generally, candidates were sensible in retaining numbers on their calculators for subsequent stages of the calculation. Exemplar 10 below shows an immaculate response from a middle-grade candidate. Exemplar 10

$|$| |
| :--- | :--- |

information presented is relevant and substantiated.

Level 2 (3-4 marks)

Some explanation, limited or no description and both resistance values correct

OR
Clear explanation, limited or no description and calculations mostly correct / one correct calculation
OR
Clear explanation, some description and no calculations

There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence.

Level 1 (1-2 marks)

Some explanation
OR
Some description
OR
Some calculation

There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.

0 marks

No response or no response worthy of credit

- Resistance of LDR varies with (intensity) of light
- In light
- resistance of LDR is low
- p.d. across LDR is low
- p.d across resistor (or V) is high
- current in circuit is large
- In darkness
- resistance of LDR is high
- p.d. across LDR is high
- p.d across resistor (or V) is low
- current in circuit is small
- $\quad V_{\text {max }}=4.0 \mathrm{~V} ; V_{\text {min }}=2.0 \mathrm{~V}$
- Potential divider equation quoted
- Substitution into potential divider equation

Description of determining frequency

- Time between pulses is constant because of constant speed
- Time between pulses $=0.4$ (s)
- $f=1 / T$
- frequency $=2.5(\mathrm{~Hz})$

Calculations

- Resistance of LDR is $150(\Omega)$ in light
- Resistance of LDR is $1500(\Omega)$ in darkness

Examiner's Comments

This was one of the two LoR questions. It required understanding of potential dividers, light-dependent resistor and rotation frequency of a spinning plate.

Examiners expect varied responses, and two very dissimilar answers can score comparable marks as long as the criteria set out in the answers' section of the marking scheme are met. Level 3 answers had the correct maximum and minimum resistance values of the LDR, a decent description and explanation of the trace shown in Fig. 17.2, and an outline of how the frequency of the spinning plate was determined. As mentioned earlier, eclectic answers are inevitable verbose and concise answers can be at Level 3.

In Level 2 answers there were generally missed opportunities. Halfdone calculation and descriptions either with some errors or lacking in depth. Level 1 answers had some elements of calculations or descriptions.

The two exemplars below, illustrate a Level 3 response and a Level 1 response.

				At a varity of tempeatives from 0 - 100° in in $10^{\circ} \mathrm{C}$ intervale record the wenentr valtage. of the wire Dr this when yourd keep the teperature comatont and to wie is also at this tempenture. ie hold it at to tempenture for 2 mins betane taking reults. Alno intic the unte to ennue it is all tho nore temperture. One you have so reuulte for all temperatures. Repect tivice mose and talse arerages. Work oot the resistane For lach Fimperatue uring $\frac{V}{T_{i}}=R$ Plot a graph of $\frac{R}{R \theta}$ againat θ where R_{0} is the value yon got for $00^{\circ} \mathrm{C}$ or os close to this temperdurs you lould get. Plot a line of bent fit o work out tho gradiat. If It it is a ctright lis then the relationshis is true The gradont. ahouls be k and the y interant 1. This graph k gives the value for k. To improve acurady yeg whowld repeat He experiment a mutiple tines ond tabe in Merage gradient to give a more acuurats reault. You should abs get yoor wiater γ thes coil to $0^{\circ} \mathrm{C}$ or adoze pasable, to give a nore preies value for E o. About half of the candidates remembered to stir the heating water. Only a minority allowed time for thermal equilibrium to be reached with the heating removed before taking measurements. Many did not state how they heated the water which was important because a group described using the given nichrome wire and supply for this purpose. Many wanted to take the unnecessary precaution of lagging the beaker or using a lid to avoid heat loss. One sensible improvement suggested was to use a digital thermometer in place of the one in the diagram. The advantages of this change were not always explained. The candidates were able to explain how to process the data to obtain a value for k. Only a very few did not draw a graph. As in question 5 b many are not clear about the difference between a linear and a proportional relationship. A good exposition describing a suitable graph with a y-intercept of R_{0} could be ruined by the statement that the graph showed that R was proportional to θ.
		Total	6	
4 3	i		B1 B1	One correct line (or dot and cross) drawn Line must go through centre of coil Allow an incomplete line or a complete circle round the coil Ignore direction of arrow More than one line drawn All lines drawn must go through centre of coil and follow correct shape and direction of field

		with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit		to the marking, there are key points which should be present for the award of given levels. The question is structured in two main parts: the determination of E and r, and then the calculation of R and P for the table. However, each of these parts contain additional instructions which were often ignored by the candidates. For the emf and internal resistance, an explanation of the method used was required, the most usual way would be based around a rearrangement of $E=V+I r$. For the resistance and power, a qualitative description of how they are related is needed, along with an appreciation that when the internal resistance equals the load resistance the power is at its maximum. For the most part, candidates carried out the calculations well, completing the table and identifying E and r correctly, but did not give suitable and detailed descriptions leading to them being limited to lower levels. Very few discussed the resistance and power relationship at all, despite it being a reasonably simple pattern. It is very important that candidates make note of all that is required in a LoR question if they are to access the higher levels. The vast majority of candidates did sufficient work to place them in Level 2. Misconception Many candidates missed opportunities to achieve a higher level by not explaining their reasoning and not describing the pattern of R with P.
		Total	6	
4		Level 3 (5-6 marks) Clear description and clear analysis of data There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some description and some analysis of data OR Clear description OR Clear analysis of data There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Limited description and limited analysis OR Some description	B1×6	Indicative scientific points may include: Description - Circuit showing supply, ammeter, voltmeter and resistance wire / coil - Measure I (in coil) with ammeter - Measure V (across coil) with voltmeter - Power (for coil) calculated: $P=V I$ - Resistance of thermistor either calculated using $R=V / /$ or measured with ohmmeter - Change P / change $V /$ use variable power supply / use variable resistor (to change I) - Keep the number of turns of coil constant throughout / no draughts / wait until the resistance stabilises Analysis - $\lg P=\lg k+n \lg R$ (or natural logs \ln) - Plot a graph of $\lg P$ against $\lg R$ - If expression is correct, then a straight line with non-zero intercept - \quad gradient $=n$ - intercept $=\lg k$

		OR Some analysis of data There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit		- $k=10^{\text {intercept }}$ (or $k=\mathrm{e}^{\text {intereept }}$ for natural logs)
		Total	6	
	i	$\begin{aligned} & 12000=\frac{Q}{4 \pi \varepsilon_{0} r} \\ & 12000=\frac{Q}{4 \pi \varepsilon_{0} \times 0.19} \\ & Q=2.5(4) \times 10^{-7} \text { (C) } \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A0 } \end{aligned}$	Allow $E=(V / d=) 6.316 \times 10^{4}$ and $E=6.316 \times 10^{4}=\frac{Q}{4 \pi \varepsilon_{0} \times 0.19^{2}}$
	ii	$\begin{aligned} & t=78 \times 3600 \\ & 1 \begin{array}{l} \left(I=\frac{2.5 \times \times 0^{-7}}{78 \times 300}\right. \\ I=8.9 \times 10^{-13}(\mathrm{~A}) \end{array} \\ & (R=) \frac{6000}{9.0 \times 10^{-13}} \text { or } 6.7 \times 10^{15}(\Omega) \text { or } V \\ & =I R \text { and } R=\frac{\rho L}{A} \\ & 2 \quad \frac{6000}{9.0 \times 10^{-13}}=\frac{\rho \times 0.38}{1.1 \times 10^{-4}} \\ & \rho=1.9 \times 10^{12}(\Omega \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 0 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	There is no ECF from (b)(i) Note 2.54×10^{-7} gives an answer $9.0 \times 10^{-13} \mathrm{~A}$ There is no ECF from (b)(ii)1 Take 12000 V as TE for this C1 mark, then ECF Note $8.9 \times 10^{-13}(\mathrm{~A})$ gives an answer $2.0 \times 10^{12}(\Omega \mathrm{~m})$
		Total	7	
	i	Arrow in anticlockwise direction	B1	Allow this mark for correct direction shown on diagram either on or off connecting wires Examiner's Comments This question required the candidates to appreciate that the sum of the emfs will lead to an anticlockwise conventional current. This question was answered well by the majority of candidates, however a number put two directions on, one from each cell. Misconception The unusual setting out of the circuit meant that some candidates were unsure whether parts of the circuit were in series or parallel. This could have been overcome by following the circuit or even by redrawing it.
	ii	$\begin{aligned} & \left(E=4.5-2.4 \text { or }\left(R_{T}=\right) 0.80+0.50+\right. \\ & 1.2 \end{aligned}$	C1	$E=2.1(\mathrm{~V}) ; \mathrm{R}_{\mathrm{T}}=2.5(\Omega)$

		$\begin{aligned} & 4.5-2.4=I \times(0.80+0.50+1.2) \\ & I=0.84(\mathrm{~A}) \end{aligned}$	C1 A1	Treat missing 1.2 resistance as TE Allow 2 marks for 2.8 (A); $\mathrm{E}=6.9 \mathrm{~V}$ used Examiner's Comments This calculation required the candidate to set out the whole circuit in one. Around one third did not score any marks on this question as they attempted to treat each cell individually and then produce some form of average. Other common misunderstandings included treating the 0.5 ohm and 0.8 ohm resistors as if they were in parallel, and adding the emfs.
		$\begin{aligned} & (I=\text { Anev }) \\ & 0.84=\pi \times\left(2.3 \times 10^{-4}\right)^{2} \times 4.2 \times 10^{28} \times \\ & 1.60 \times 10^{-19} \times v \\ & v=7.5 \times 10^{-4}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1	Possible ECF from (ii) Note answer is $2.5 \times 10^{-3}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ for $I=2.76$ (A) Allow 1 mark for 1.9×10^{-4}; diameter used as radius Examiner's Comments This question was well done by a large number of candidates, many of whom scored full marks by correctly following through with their value of current from the previous part. Few candidates used the diameter instead of the radius when determining the cross sectional area, and for the most part the setting out of the calculation meant that credit could be given even if arithmetic errors occurred later.
		Sensible suggestion, e.g. use a water bath / fan / only switch on when taking readings Need to lower the temperature / reduce resistance of \mathbf{R}	M1 A1	Allow keep the surroundings cold Allow to keep the temperature / resistance constant OR allow increase in temperature increases resistance Examiner's Comments Candidates were expected to provide any method of cooling the circuit, or preventing it heating in the first place. A wide variety of solutions were given and as long it is viable, it was credited. Misconception Some candidates gave perfectly viable solutions, but these involved changes to the circuit, which was not allowed in the question. It is very important to make sure than any response does fit what is being asked.
		Total	8	
4 8	i	Correct circuit with a battery, potential divider, lamp and voltmeter.	B1	

\begin{tabular}{|c|c|c|c|c|}
\hline \& i \& Correct symbols used for all components. \& B1 \& Allow: A cell symbol for a battery \\
\hline \& ii \& \begin{tabular}{l}
Description: \\
The temperature of the filament increases. (AW) \\
The resistance of the lamp increases \\
from a non-zero value of resistance. \\
Explanation: \\
Resistance increases because electrons/charge carriers make frequent collisions with ions. (AW)
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
B1
\end{tabular} \& Allow 'when cold the resistance is small' \\
\hline \& ii
i

ii
i
ii
i \& ($P=V I$) current in \mathbf{X} is 3 times the current in \mathbf{Y} Or area of \mathbf{X} is 4 times smaller than area of \mathbf{Y}

$$
\begin{aligned}
& I=\text { Anev and ratio }=\frac{3}{0.25} \\
& \text { ratio }=12
\end{aligned}
$$ \& C1

C1
A1
A \& Allow other correct methods.

\hline \& \& Total \& 9 \&

\hline 4 \& i \& $$
(R=) \frac{6.0}{0.150}
$$

$$
R=40 \Omega
$$ \& M1

A0 \& | Allow any correct value of $V(\pm 0.1 \mathrm{~V})$ divided by the correct value of $I(\pm 10 \mathrm{~mA})$ from the straight line for \mathbf{R} |
| :--- |
| Examiner's Comments |
| The majority of the candidates scored 1 mark here for clearly using the graph to show the resistance of \mathbf{R} to be 40Ω. Most used a data point from the straight line. A significant number also used the idea that the gradient of the straight line is equal to the inverse of the resistance. However, candidates are reminded that resistance is equal potential difference divided by current, but in this context of a straight line through the origin, determining resistance from the gradient was allowed. Of course, determining the gradient of a curve is simply incorrect physics for determining resistance. |

\hline \& ii \& \[
$$
\begin{aligned}
& (V \mathrm{~L}=) 1.4(\mathrm{~V}) \text { or }\left(V_{\mathrm{R}}=\right) 4.0(\mathrm{~V}) \text { or }\left(R_{\mathrm{T}}=\right) \\
& 6.0 / 0.1(\Omega) \\
& \left(V_{\text {terminal }}=\right) 5.4(\mathrm{~V}) \text { or }\left(V_{\mathrm{r}}=\right) 0.6(\mathrm{~V}) \text { or }(r \\
& =) 60-54(\Omega) \\
& r=6.0(\Omega)
\end{aligned}
$$

\] \& C1 \& | Allow full credit for other correct methods Possible ECF from (i) Allow $\pm 0.1 \mathrm{~V}$ for the value of p.d. from the graph |
| :--- |
| Note getting to this stage will also secure the first C1 mark |
| Allow 1 SF answer here without any SF penalt |
| Examiner's Comments |
| This was a discriminating question with many of the top-end candidates effortless getting the correct answer of 6.0Ω for the internal resistance r. The most common error was omitting the |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \& \& resistance of the filament lamp in the calculation. This gave an incorrect value of \(20 \Omega\) for the internal resistance. Candidates doing this still managed to pick up 1 mark for the total resistance of \(60 \Omega\). \\
\hline \& ii \& \[
\begin{aligned}
\& \rho=\frac{40 \times 2.4 \times 10^{-6}}{8.0 \times 10^{-3}} \quad \text { (Any subject) } \\
\& \rho=0.012(\Omega \mathrm{~m})
\end{aligned}
\] \& C1
A1 \& \begin{tabular}{l}
Allow ECF \\
Allow 1 mark for either 0.018 for using \(60 \Omega, 0.016(2)\) for using \(54 \Omega\) or for 0.0018 for \(6.0 \Omega\) \\
Examiner's Comments \\
The success in this question depended on understanding the term \(n\) in the equation \(I=\) Anev given in the Data, Formulae and Relationship booklet. A significant number of candidates took \(n\) to be the total number of charge carriers within the volume of \(\mathbf{R}\), instead of the number of charge carriers per unit volume (number density). Those who appreciated this had no problems coping with prefixes and powers of ten. The correct answer was \(7.7 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1}\). \\
Using \(6.5 \times 10^{17}\) for the number density, gave an answer of \(4.0 \times 10^{5}\) \(\mathrm{m} \mathrm{s}^{-1}\); examiners credited 1 mark for this incorrect answer, mainly for the manipulating and using the equation \(I=\) Anev. \\
Exemplar 6
\[
\begin{array}{ll}
l=\frac{1}{1}=\frac{1}{\text { Ane }} \& V=\frac{0.1}{2.4 \times 10^{-6} \times \frac{6.5 \times 1002}{2.4 \times 10^{-6} \times 8 \times 10^{-3}}} \times 1.6 \times 10^{-19}-\frac{1}{30} \\
\& v=.7 .4 \times 10^{-3}
\end{array}
\] \\
This exemplar illustrates a perfect answer from a C-grade candidate. \\
The equation has been rearranged correctly and the substitution is all correct and easy to follow. The number density \(n\) has not been calculated separately - it forms an integral part of the whole calculation. The one big benefit of this is that you do not end up with rounding errors. A decent technique demonstrated here. All correct for 3 marks.
\end{tabular} \\
\hline \& v \& \begin{tabular}{l}
\(n=\frac{6.5 \times 10^{17}}{2.4 \times 10^{-6} \times 0.008}\) or
\[
n=3.385 \times 10^{25}\left(\mathrm{~m}^{-3}\right)
\]
\[
v=\frac{0.100}{2.4 \times 10^{-6} \times 3.385 \times 10^{25} \times 1.60 \times 10^{-19}}
\] \\
(Any subject)
\[
v=7.7 \times 10^{-3}\left(\mathrm{~m} \mathrm{~s}^{-3}\right)
\]
\end{tabular} \& C1

C1

A1 \& | Note do not penalise again for the same POT error |
| :--- |
| Allow 1 mark for $4(.0) \times 10^{5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) ; n=6.5 \times 10^{17}$ used |

\hline \& \& Total \& 9 \&

\hline
\end{tabular}

_

